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Abstract 

The feeder animal price is a derivative in the sense that its value depends upon the 

price of animals for the consumption market. It also depends upon the biological growth 

technology and feed costs. Daily maintenance costs are of particular interest to the 

husbander because they can be avoided through accelerated feeding. In this paper, the 

optimal feeding path under equilibrium feeder animal prices is established. This analysis 

is used to gain a better understanding of feeding decisions, regulation in feedstuff 

markets, and the consequences of genetic innovations. It is shown that days on feed can 

increase or decrease with a genetic innovation or other improvement in feed conversion 

efficiency. The structure of comparative prices for feeder animals at different weights, the 

early slaughter decision, and equilibrium in feeder animal markets are also developed. 

Feeder animal prices can increase over a weight interval if biological feed efficiency 

parameters are low over the interval. 

 

Keywords: days on feed, energy use, feed ban, growth hormones, maintenance 

requirements, ration energy density, veal market. 
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FEEDING AND THE EQUILIBRIUM FEEDER ANIMAL  
PRICE-WEIGHT SCHEDULE 

Introduction 
Agricultural production is typically thought of as a biological process. In the case of 

crop agriculture, output and seed are living organisms. In the case of animal agriculture, 

parent stock, young stock, and feedstuffs are or recently were living organisms. Notwith-

standing the rapid advances in biological sciences since 1950, our understanding of 

biological input-output relations outside the laboratory is not yet nearly as concrete as, say, 

our understanding of the physics of a diesel engine tractor in the field. Yet engines, plants, 

and animals are all ultimately governed by the same universal laws of energy. Problems 

with managing biological production relations have included the uniqueness of the organ-

ism due to sexual propagation, reliance on stochastic inputs such as rain and sunshine, and 

the absence of discerning laws regarding how energy converts in the organism. 

Yet hard biological sciences are emerging, allowing growers, their advisors, and in-

put suppliers to lean more heavily on some well-grounded, explicit production relations. 

In the case of genetics the hard science foundations are quite strong, while in other cases 

the foundations are less well understood. A notable instance of the latter that is of great 

importance to agriculture concerns the allometric scaling laws, that is, weight homogene-

ous scaling. The best known of these empirical regularities pertains to energy 

requirements for a body at rest, and so to the rate of biological growth on a given ration. 

From an economics perspective, maintenance energy rates per unit of time are of in-

terest because they may be viewed as a fixed but partially avoidable cost. The cost is 

fixed because, at least for the organism at hand, there is not much one can do about daily 

maintenance energy losses except discourage movement and provide shelter to avoid un-

necessary heat loss, two major motives for animal confinement. The cost is avoidable to 

the extent that an accelerated growth regime, through feed management or other means, 

can bring the animal to maturity earlier. But rate of growth is not entirely a technical de-
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cision because feedstuffs come in a variety of forms. Feedstuffs are bulky so that spatial 

price dispersion can be very high. The efficient husbander will look to trade off high 

growth rates, and so low lifetime expenditure on maintenance costs, against the reduced 

daily feed costs that lower density feeds can deliver.  

Briefly, this article seeks to establish consequences for optimal feeding and live animal 

pricing of one widely affirmed allometric scaling law, Kleiber’s law (1932), that when 

viewed in isolation can be seen as a scale economy. We use the animal scientist’s account-

ing for energy uses in maintenance and growth to develop how Kleiber’s law should affect 

feed ration decisions given the variety of ration compositions available to the grower. We 

also use the law to derive structure on the relationship between the mature animal price in 

equilibrium and the price of an immature feeder animal at any weight.  

The paper should be of interest because active feeder markets, be they spot or con-

tract, exist for hogs and cattle in most countries with a significant agricultural sector, 

while local specialty feeder markets exist for goats, horses, and other species. Apart 

from young stock, feed is generally the largest input in meat production. Feeder mar-

kets have undergone significant structural changes in the United States and elsewhere 

over the past fifty years. For example, steers are now being fed more intensively to be 

slaughtered younger and at a heavier weight (Elam and Preston 2004). In addition, 

many of the most significant innovations in animal agriculture, including confinement, 

genetic manipulation, hormone treatments, and nutrition innovations, have been used to 

improve feed conversion efficiency (fce). Among major policy issues concerning meat 

markets in recent years are bans on the use of some animal-derived materials in animal 

feed and the use of some growth promotants. To better understand evolving trends, new 

technologies, and the economic consequences of policy adjustments, it would be useful 

to have available a robust microeconomic model. This model should be detailed and 

explicit in representing the role of feed in meat production, and it should also incorpo-

rate equilibrium pricing. Existing models are very limited in these areas. 

The most influential paper in the literature is by Jarvis (1974). He viewed cattle as 

assets with biological growth options such that slaughter occurs when growth potential 

has been exhausted. His model specified a single-harvest objective function, assuming 

also that daily feeding costs were weight and time invariant. Feeder animal prices were 
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imputed as Ricardian rent in perfect competition. The analysis found a withholding mo-

tive in response to higher retail level beef prices, suggesting a backward-bending supply 

curve. Slaughter weight was found as the weight that minimized the unit cost of meat, 

and it was suggested that the feeder animal price per pound should decline as weight in-

creased to the slaughter weight. 

Paarsch’s (1985) set of models advocated, more realistically, that the grower be held 

to harvest sequentially (i.e., in rotation) according to Faustmann’s paradigm. In addition, 

weight gain was allowed to depend on weight and the chosen feed regime was allowed to 

vary over time. Finally, the price of young stock was held to be exogenous to the meat 

price. This means that, in contrast with the Jarvis model, Paarsh’s model can relate noth-

ing about the feeder animal price-weight schedule (pws) in what typically are competitive 

feeder animal markets. He found that the rotation model reversed Jarvis’s inference that 

there should be a delayed slaughter response to an increase in meat prices. Amer et al. 

(1994) have utilized Jarvis’s economic insight, together with empirical equations from 

Fox, Sniffen, and O’Connor (1988), to ask when it is optimal to slaughter and how one 

should go about comparing performances across breeds with different growth characteris-

tics. Much of the subsequent related work has focused on some peculiar dynamics of 

feeder animal markets, namely, inverted price responses and the role of dynamic biologi-

cal restrictions in price cycle behavior (Rosen 1987; Rosen, Murphy, and Scheinkman 

1994; Chavas 2000; Aadland 2004).  

That literature has not addressed feeding decisions, the role of maintenance costs, or 

the structure of the feeder animal pws.1 A second literature track has sought to identify 

the best feeding path in an optimal control framework. Chavas, Kliebenstein, and 

Crenshaw (1985) modeled swine feeding and marketing under rotational harvest. Talpaz 

et al. (1988, for broilers) and Cacho, Kinnucan, and Hatch (1991, for catfish) modeled 

other species without accounting for sequential harvest. These papers did account for 

maintenance costs and emphasized empirical simulations with appropriate available data 

rather than seeking to develop a conceptual model in the manner of Jarvis or Paarsch.2 

Later empirical simulation work, summarized in Hernández et al. 2003, has focused on 

fish production. The papers most relevant to the current research are by Arnason (1992) 

and by Heaps (1993), and they will be reviewed in due course. This optimal feeding lit-
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erature has taken feeder animal prices as given without reference to equilibrium, and op-

timum feeding paths for realistic growth dynamics are difficult to interpret. 

The intent here is to re-visit some theoretical issues raised by Jarvis and Paarsch, 

ones not addressed in any of the other theoretical or empirical literatures. By contrast 

with the Jarvis and Paarsch models, we model daily maintenance costs with specific 

dynamic technical production relations. We take Jarvis’s Ricardian perspective on 

feeder animal prices but the Paarsch rotation assumption on the grower’s objective 

function. We depart from both approaches in providing explicit specifications for ani-

mal growth and how growth depends on feed through the animal’s life. We do so in 

part because findings in animal science allow for the technical structure we will im-

pose, and in part because we seek a clearer understanding of the feeder animal pws and 

the determinants of optimal feed rations than has been provided in the literature to this 

point. Daily maintenance costs are crucial in this regard and have been ignored outside 

the empirical literature. We depart from the vast majority of the literature, Jarvis being 

the exception, by endogenizing prices paid for feeder animals. Rather than making it 

more difficult to interpret optimal feeding paths, our equilibrium pricing approach and 

growth specifications establish a simple and intuitive optimal feeding trajectory. This 

simplicity allows us to study such policy issues as regulations on hormone implants and 

the use of animal-derived materials in feedstuffs, and also to impute the equilibrium 

feeder animal pws. We also show that the insights we provide on the optimal feeding 

trajectory are quite general in that they do not depend upon the technical growth rela-

tions assumed in our main model. 

The paper is laid out as follows. First is a discussion of the origin and grounding of 

the allometric scaling law of relevance to us, Kleiber’s law (Smil 2000). This is followed 

by the baseline production model, and an analysis of model implications for pricing im-

mature animals. Conditions such that incentives support the slaughter of young animals 

are also considered, as is closure of the model under long-run equilibrium. The roles of 

biological parameters in determining how the unit price of animals changes with weight 

are developed. After generalizing the model to apply for less structured assumptions on 

the growth technology, the paper concludes with a brief discussion.  
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Maintenance Costs 
In 1839, scientists F. Sarrus and J. Rameaux suggested a relationship between weight 

and energy expended by an organism at rest (also known as base metabolic rate, and 

hereafter labeled as r ).3 Animals of all weights, w , are in approximate equilibrium with 

the world around them, and lose heat at the rate of body heat production. In addition, skin 

surface area grows in proportion to 2 / 3w  and heat loss is in proportion to surface area. 

Therefore, they argued that 2 / 3r w∝  also. Max Kleiber (1932) sought to validate this by 

using observed metabolic rates for different species, but concluded that 3/ 4r w∝  was 

more consistent with the data. Later works by Brody (1945), by Hemmingsen (1960), by 

Bartels (1982), by Bennett and Harvey (1987), by Heusner (1991), and by numerous oth-

ers have continued a vigorous debate on whether 3/4 or 2/3 or neither are the appropriate 

power relations. 

Recent research by Dodds, Rothman and Weitz (2001) suggests that values close to 

3/4 may be more appropriate for animals above 10 kg, for example, hogs, sheep, goats, 

and cattle, while 2/3 is more plausible for birds and smaller mammals. For the qualitative 

results in this paper, the exact number is not relevant except in that it should satisfy 

, (0,1)r wα α∝ ∈ , so as to provide size economies with respect to maintenance costs. 

Evidence on scaling is of interest to biologists because it must comply with Darwinian 

concepts of efficient energy use on the part of a species. Scaling relations should reveal 

much about the critical constraints on survival that species face, and on how efficiently a 

species converts energy. Among the first formal explanations proposed for Kleiber’s law 

was due to McMahon (1973), who viewed it as a civil engineering problem.4 More recent 

theories by West, Brown, and Enquist (1997, 1999) and Banavar, Maritan, and Rinaldo 

(1999) emphasize efficiency in the essential function of nutrient circulation. Whatever the 

reason, 3/4 power scaling has become embedded in practical science. Because many drugs 

are believed to clear the body according to a 3/4 scaling law (Mordenti 1986), anesthetics 

and other drug prescriptions are often scaled to body mass in this manner. In agriculture, 

and of direct relevance to this research, 3/4 scaling is assumed for maintenance energy and 

feed intake relations (National Research Council 2000).  
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Production Model 
An animal requires maintenance calories amounting to M  per day. In order to fat-

ten the animal, energy content of liveweight gained must amount to E . The animal’s 

intake capacity is I  units of feed per day. Both M  and I  depend upon the animal’s 

liveweight, denoted as w  and measured in pounds, in a manner that we will soon spec-

ify. For the moment, we consider only a small weight gain interval such that these 

attributes may be considered to be fixed. Feedlot incoming and outgoing weights are 

inw  and ouw , respectively. 

A choice available to the grower is the energy density of rations fed, and energy den-

sity b∈ [0, ]b  can be attained at cost per unit feed amounting to ( )c bθ , where ( )c b  is an 

increasing and convex function.5 Here, θ  is a cost shift parameter that might change be-

cause of feed regulations (such as a ban on using animal grease as a feedstuff) or an 

increase in component prices due to increased demand for feed. Growers are homogene-

ous in the sense that all face cost ( )c bθ . Cost of feed per day is, therefore, ( )I c bθ  for all 

growers. Let T  be days on feed. Liveweight gain per day is ( )Ib M λ− , where λ  is the 

conversion of surplus energy Ib M−  into pounds liveweight. Animals should be fed to 

capacity because conversion to liveweight is linear in calories surplus to maintenance. 

Therefore, it takes /[( ) ]E Ib M λ−  days to grow an animal from inw  to ouw , and days on 

feed must satisfy /[( ) ]T E Ib M λ= − . 

Gross revenue across days on feed is R∆ , and its composition will be explained 

shortly. Gross revenue per day is ( )( ) /R Ib M Eλ∆ − . Revenue per day net of feed costs is  

 ( )( ) ( ).R Ib MV I c b
E

λ θ∆ −
= −  (1) 

Reservation utility will depend on the level of resources applied, which will depend in 

turn on the animal’s intake through demands on labor, machinery, and buildings. We 

make the assumption that V Iκ= , so that perfect competition ensures6 

 ( )( ) ( ).R Ib MI I c b
E

λκ θ∆ −
= −  (2) 
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It remains to characterize R∆ , the change in revenue. We will do so by making I  

and M  functions of weight so that we need no longer confine attention to the small 

weight interval [ , ]in ouw w . To do this we need to specify growth dynamics. We fix the ini-

tial, that is, time 0t = , weight of the animal at (0)w . The animal’s maturity weight is 

given at mw , referred to as the maturity plateau and taken as given, but the maturity date 

depends on the animal’s feeding regime. Weight at time 0t ≥  is written as ( )w t . Accord-

ing to Kleiber’s law, the animal’s instantaneous maintenance cost is 0.75[ ( )] MM w t γ= , 

0Mγ > . We will assume that the animal has intake capacity 0.75[ ( )] II w t γ= , 0Iγ > .7 For 

future reference, we will describe the couple ( , )I Mγ γ  as an animal’s genetic profile. An 

animal on ration density b  and consuming at capacity will consume at the rate 
0.75[ ( )] Iw t bλ  calories. This allows us to write (2) as 

 [ ( )] ,
( )

I

I M

c b ER
b

κ θ γ
γ γ λ
+

∆ =
−

 (2′) 

where [ ( )] /[( ) ]I I Mc b bκ θ γ γ γ λ+ −  is cost per unit gain (and so is free of time units) and 

where E  is the target gain in calories.  

Efficiency requires that R∆  be minimized over [0, ]b b∈ . This is the critical as-

sumption that differentiates our work from the optimal feeding literature reviewed earlier. 

If R∆  is not minimized then an alternative energy regime will be more efficient, allowing 

the grower to pay more for a feeder animal in perfect competition and so drive R∆  

down.8   

 

PROPOSITION 1. Let an animal have Kleiber’s law maintenance costs with three-fourths 

power intake and genetic profile ( , )I Mγ γ . Then the optimal choice of b  satisfies  

 *
[0, ]

[ ( )]arg min ( ; , , ),  ( ; , , ) .
( )

I
I M I Mb b

I M

c b Eb H b H b
b

κ θ γγ γ θ γ γ θ
γ γ λ∈

+
= =

−
 (3) 

It is weight invariant. 
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To better understand the relationship in (3), write it as * * *( ) ( ) ( ) /c b b c b b b b κ θ− ≥ − +  
* *( ( ) ( )) /M Ic b c b b bγ γ− ∀ ≠ . The left-hand side is positive if and only if 

* *( ) / ( ) /c b b c b b≥ . If ( ) /c b b  is decreasing in b  then * * *[ ( ) / ( ) / ]( ) 0c b b c b b b b− − < . 

Since * * * * 2 * * * *[ ( ) / ( ) / ]( ) ( ) /[ ] [ ( ) ( )]( ) /[ ]M Ic b b c b b b b b b bb c b c b b b bbκ θ γ γ− − ≥ − + − − , it 

follows that for ( ) /c b b  to decrease requires the corner solution *b b= . In that case, cost 

per unit of energy is decreasing while an increase in ration density also saves on both main-

tenance costs and the opportunity costs of committed resources. It is reasonable, however, 

to ignore this case because it is likely that ˆ( ) 0c b =  for some ˆ 0b > , where the ration is 

comprised of by-products (e.g., from bakeries) with insufficient nutrient density to clear 

maintenance costs. If ( )c b  is convex on ˆ( , ]b b , then ( ) /c b b  must be an increasing func-

tion. From this point on we will consider only interior solutions. 

For interior solutions, implications of equation (3) include the following:9 

 

PROPOSITION 2. Under the growth technology assumptions in Proposition 1, the incentive 

to feed a high-energy ration increases in the value of (a) Mγ , (b) Iγ− , (c) /I Mρ γ γ− = − , 

(d) θ− , and (e) κ . 

 

Part (a) demonstrates some consequences of higher daily maintenance costs. All else 

being equal, a higher value of Mγ  will depress feeder animal prices and may induce early 

culling. We will return to this issue later. If the animal is not culled early, then a higher 

maintenance cost parameter will elicit a more intensive feeding regime in order to more 

efficiently gain beyond daily maintenance costs. A genetic innovation, of which the only 

effect is to push down the value of Mγ  for a breed, should reduce the incentive to feed in-

tensively. In part (b), Iγ  can be considered to be determined by genetic endowments or 

through feed management practices that enhance palatability, for example, rolling grain 

and reducing dust (Ensminger 1987, chap. 30). Alternatively, non-use of growth-

promoting implants (i.e., hormone implants but not ionophores) is held to decrease dry 

matter intake by about 6 percent (Fox et al. 1992).10 An increase in Iγ  reduces the need 
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to avoid daily maintenance costs through a costly high-energy regime. Part (c) is a com-

plete characterization of the contents in parts (a) and (b). One may view ρ  as an index of 

an animal’s genetic potential for meat production. 

Concerning part (d), the recent bans on ruminant-to-ruminant feed in the United 

States and elsewhere has raised the possibility that animal and poultry fats will be re-

moved entirely from the animal and poultry feed markets. This will increase the cost of a 

high-energy diet. By contrast, an increase in opportunity costs of resources (e.g., high κ  

due to high labor costs, environmental regulations, or animal welfare laws) will 

strengthen the incentive to increase the marginal productivity of those resources by feed-

ing to increase throughput. 

The reader may find the effects in Proposition 2 to be quite intuitive. As we will 

show, intuition is more likely to fail regarding consequences for days on feed. Given 

weight homogeneity (degree 0.75, in our case) regarding growth, in order to establish the 

roles of Iγ  (through, e.g., hormones, feed preparation methods, or genetics) and Mγ  

(through, e.g., confinement or genetics) for days on feed, we need only understand how 
*

I Mbγ γ−  changes.  

 

PROPOSITION 3. Make the growth technology assumptions in Proposition 1. Then there 

exist increasing, convex ration cost functions such that optimal days on feed either in-

crease or decrease with an increase in either (a) Iγ , or (b) Mγ . But (c) optimal days on 

feed always increase with an increase in θ .  

 

Intuition for part (a) is that the direct effect of an increase in Iγ  on *
I Mbγ γ−  need 

not be so strong as to dominate the negative effect on the level of optimal rations. Intui-

tion for part (b) is that a decrease in Mγ  relaxes the incentive to feed intensively to clear 

daily maintenance costs and, again, the indirect effect can dominate the direct effect. An 

interesting feature of part (a) is that *
0( / ) | 0

MIdb d γγ = =  and so days on feed always in-

crease with Iγ  whenever 0Mγ = . The existence of daily maintenance costs has a 

qualitative effect on how optimal rations respond to intake innovations. In each of parts 
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(a) and (b), we believe that the direct effect will likely dominate. We lay out the other 

possibility in order to better illustrate how technologies and regulations can affect age at 

slaughter. Part (c) follows almost directly from Proposition 2 as there is not any direct 

effect on optimal days on feed. Part (c) is of interest because the ratio of corn to live cat-

tle price in the United States has been, over 2000-2004, approximately half its level in the 

late 1940s. While official data have not been kept, it is widely believed that cattle slaugh-

ter ages have declined since World War II (Schroeder, Mintert, and Brester 1995; Elam 

and Preston 2004).  

 

Feeder Price-Weight Schedule 
Having considered ration decisions, we turn to the feeder pws. Notice in (2′) that 

homogeneity allowed us to write revenue growth independently of animal weight. Propo-

sitions 1 and 2 do not involve weight, so the feeder animal’s ration density is weight 

separated. Thus, we can take b  as given and time invariant when solving for physical 

growth and the feeder pws. 

Our model set-up identifies the flow of calories converted to liveweight as 
* 0.75[ ( )]Ib w tλγ  0.75[ ( )]M w tλγ− . Therefore, the rate of change of weight is governed by  

 *
0.75

1 ( ) .
[ ( )] I M

dw t b
w t dt

λγ λγ= −  (4) 

Observe that (4) implies 

 
2 2 * 2 2 2 * 2

0.5
2 2 0.5
( ) 3 ( ) Ln[ ( )] ( )[ ( )] 0;  0;

4 4[ ( )]
I M I Md w t b d w t bw t

dt dt w t
λ γ λγ λ γ λγ− −

= > = − <  (5) 

so that weight (with ration path endogenized) is convex in time before the maturity pla-

teau but the log of weight is concave in time before that plateau. Convexity 
2 2( ) / 0d w t dt >  is in contrast with the concavity assumptions made in Jarvis and in 

Paarsch but is consistent with the beef production literature (Ensminger, 1987, p. 838; 

Goodwin 1977, p. 158; Neumann 1977, p. 400; Owen 1991, p. 39). 



Feeding and the Equilibrium Feeder Animal Price-Weight Schedule / 11 

Since *b  is weight-independent, we may readily integrate (4) from initial weight 

(0)w  to obtain the weight path as the formula 

 ( )40.25 *( ) [ (0)] 0.25( ) .I Mw t w b tγ γ λ= + −  (6) 

With maturity weight mw , the maturity date is given as mT ,  

 
( )0.25 0.25

*

4 [ (0)]
.

( )
m

m
I M

w w
T

bγ γ λ
−

=
−

 (7) 

In general, the time on feed to weight w  will be 0.25 0.25 *4( [ (0)] ) /[( ) ]w I Mt w w bγ γ λ= − − .  

For ( )P w  as the feeder animal pws when weight is w , equation (2′), upon taking to 

the infinitesimal limit as ( ) / ( ) ( ) / (Cost) /dR w dw P w wdP w dw d dw= + = , allows us to 

write  

 * *( ) ( ) ( ; , , ) ( ; , , )( ).m ms w s w

m m I M I M ms w s w

dR s ds P w P w w H b ds H b w w
ds

γ γ θ γ γ θ
= =

= =
= − = = −∫ ∫  (8) 

Thus, growth rate homogeneity, as given by (4), ensures that feeder animal value ( )P w w  

is linear in weight with value ( ) [ ( )] ( )m mP w w P H w H w= − ⋅ + ⋅ . It is not linear in time. The 

unit price of feeder animals is  

 
*

* [ ( ; , , )]( ) ( ; , , ) .m I M m
I M

P H b wP w H b
w
γ γ θγ γ θ −

= +  (9) 

Differerentiation of (9) supports  

 
* 2 *

2 2 3

( ) [ ( ; , , ) ] ( ) [ ( ; , , )];  2 .I M m m m I M mdP w H b P w d P w P H b w
dw w dw w

γ γ θ γ γ θ− −
= =  (10) 

If *( ; , , )m I MP H b γ γ θ> , as we will demonstrate should be the case, then the first deriva-

tive is negative while the second derivative is positive. 
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PROPOSITION 4. Make the growth technology assumptions in Proposition 1. If mP >  

*( ; , , )I MH b γ γ θ , then the feeder animal pws is decreasing and convex. 

 

That feeder animal prices are decreasing in weight is consistent with the idea that 

young animals have growth potential (Jarvis 1974) to be expended as the animal grows. 

Convexity only asserts that the growth potential component to value is most rapidly ex-

pended at lower weights. Since (10) shows that relative curvature is 
2 2[ ( ) / ] /[ ( ) / ] 2 /d P w dw dP w dw w− = , it is decreasing in weight and the proportional rate 

of decline in price with weight is larger at lower weights. 

The pws should also be affected by the growing environment. In particular, we have 

the following. 

 

PROPOSITION 5. Make the growth technology assumptions in Proposition 1. Then w∀ ∈  

[ (0), ]mw w , (a) ( ) / / 1m mdP w dP w w= ≥  and 2 ( ) / 0md P w dP dw ≤ ; (b) ( ) / 0MdP w dγ ≤  

and 2 ( ) / 0Md P w d dwγ ≥ ; (c) ( ) / 0IdP w dγ ≥  and 2 ( ) / 0Id P w d dwγ ≤ ; (d) 

( ) / 0dP w dθ ≤  and 2 ( ) / 0d P w d dwθ ≥ . 

 

Part (a) may be viewed as a sensitivity result, where the Ricardian rent due the owner 

of young stock as a result of high meat prices becomes less significant on a per pound basis 

at larger weights. In contrast with part (a), parts (b) through (d) require an understanding of 

ration consequences. Parts (a) through (d) do, though, follow a similar theme. The effects 

of a parameter innovation that tends to push the feeder price up are spread along the sched-

ule so that the price dampening value becomes less severe at higher weights. 

 

Veal Market 
Meat from young animals is typically more tender and palatable, so the principal mo-

tive for growing an animal is to realize growth potential when feed costs are low. The 

intent of this section is to better understand growth potential when the option exists to 

slaughter early. For the sake of exposition, we assume that the maturity price is the unique 

live price for slaughtered animals, that is, there is not a premium for young meat.11 
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From (9) we have that ( ) mP w P≥  if and only if  

 *( ; , , ).m I MP H b γ γ θ≥  (11) 

In this case, a veal market will be absent for animals of type ( , )I Mγ γ  because it will al-

ways be more profitable to feed or sell to a feedlot than to exercise the slaughter option 

before maturity. Notice that the condition is more likely to hold when */[ ( )]mP c bκ θ+  is 

relatively high, that is, when the meat-corn price ratio is high. The condition is also more 

likely to hold when Mγ  is relatively low, and when Iγ  is relatively high. Thus, animals 

with low growth parameters, perhaps surplus calves from dairy herds or chicks from lay-

ing hen flocks, are more likely to be slaughtered early. From (11) and observation of 
*( ; , , )I MH b γ γ θ  in (3), we have the following. 

 

PROPOSITION 6. Make the growth technology assumptions in Proposition 1. If a genetic 

profile ( , ) ( , )I M I Mγ γ γ γ=  is such that the grower does not slaughter the (0)w w=  ani-

mal, then the grower does not slaughter the (0)w w=  animal with genetic profile 

1 2( , )I Mν γ ν γ , 1 2 0ν ν≥ > . If a genetic profile ( , ) ( , )I M I Mγ γ γ γ=  is such that the (0)w w=  

animal is slaughtered, then the (0)w w=  animal with genetic profile 1 2( , )I Mν γ ν γ , 

1 20 ν ν< ≤ , is slaughtered. 

 

Proposition 6 may be viewed as a scaling result. The decision to slaughter at the out-

set depends only on /I Mρ γ γ= . For the growth technology in question, there exists a 

mP -dependent ρ  value, call it ˆ ( )mPρ , such that one should keep to maturity if and only if 

ˆ ( )mPρ ρ≥ .  

 

Closing the Model: The Long-Run 
To this point we have derived feeder animal prices from the mature animal price. How-

ever, feeder animals are a renewable resource and there will be a long-run supply response to 

a change in mature animal prices. In addition to the features considered in our model thus far, 
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exogenous determinants of the feeder animal supply function and of the demand for mature 

animals matter. This section will close the model by accounting for young stock supply and 

retail demand functions so that a long-run equilibrium is established.  

Set the inverse supply function for weight (0)w  animals as [ (0)] ( )ys ysP w P q= , where 

ysq  is the quantity of young stock supplied. Were [ (0)] ( )ys ysP w P q≠ , then there would be 

long-run disequilibrium in the feeder animal market and breeding herd adjustments would 

occur. Let mP  ( ; )m msP q ω=  be the live price of matured stock at mature stock quantity flow 

msq  and conditional on exogenous parameter ω . Here, ( ) / 0mdP dω⋅ > , that is, ω  repre-

sents an exogenous increase in demand for meat. Then (8) provides  

 ( ) ( )* *( ; ) ( ; , , ) ( ) ( ; , , ) (0).m ms I M m ys ys I MP q H b w P q H b wω γ γ θ γ γ θ− = −  (12) 

One way to view (12) is to consider when young stock supply is perfectly elastic at 

( ) (0) 0ys ysP q w F= > . Then the price of live, mature animals will be independent of de-

mand at *( ; ) ( / ) ( ; , , )( (0)) /m ms m I M m mP q F w H b w w wω γ γ θ= + − , the sum of a fixed cost 

for young stock and cumulated feeding costs. In general, for a perfectly elastic supply of 

young stock, the general equilibrium pws is  

 * (0)( ) ( ; , , ) ,I M
F w wP w H b
w w

γ γ θ − = +  
 

 (13) 

so that the fixed young stock cost is apportioned over weight. Note that if 

( ) [ / (0)]ys ysP q F w≡ <  *( ; , , )I MH b γ γ θ  then equilibrium price is monotone increasing in 

weight. But this is not possible in any event because the young stock would be slaugh-

tered immediately. Using (10) and (13), we have that ( ) /dP w dw =  
* 2[ ( ; , , ) ( )] (0) /I M ys ysH b P q w wγ γ θ − . Since *( ; , , )I MH b γ γ θ  is constant, the derivative 

must be negative in general equilibrium where the genetic profile ( , )I Mγ γ  is not slaugh-

tered. Convexity of the pws is assured also in this case. 
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The quantity flow of mature stock onto the retail market will depend upon the prod-

uct of two factors. These are the quantity flow of young stock, ysq , onto the feeder 

market and the inverse of time to maturity as given in (7), that is,  

 ( )
*

0.25 0.25

( )
.

4 [ (0)]
I M ys

ms
m

b q
q

w w
γ γ λ−

=
−

 (14) 

While Proposition 2 identifies no direct role for mP , that is, ω , in determining *b  there 

will be an indirect role in general equilibrium because ration costs will change in re-

sponse to altered demand in feed markets. General equilibrium responses to a change in 

the value of ω  then involve two types of adjustments. Most directly there are adjust-

ments in ysq  and msq  subject to (14) and a fixed *b . Indirectly, as recognized by Yver 

(1971), for a significant meat producing species there will be feed market adjustments 

due to a change in demand where we might view θ =  ( )ωΘ , ( ) / 0d dω ωΘ ≥ . The de-

mand-induced change in cost of rations will alter equilibrium feed decisions and so will 

shock (12) on both the right-hand side and the left-hand side, through (14). From Proposi-

tion 3 we already know that optimal time to maturity increases with an increase in θ , so 

flow balance equation (14) suggests non-trivial system responses in the long run.  

 

Generalized Feeding Path 

Suppose instead that ( ) II w wσγ= , (0,1]σ ∈ . Then work provided in Appendix B 

shows that the ration optimization problem resolves to  

 *
[0, ] 0.75

[ ( )]( ) arg min [ ; , , , ];  [ ; , , , ] ;
( )

I
I M I Mb b

I M

c b Eb w H b w H b w
b w σ

κ θ γγ γ θ γ γ θ
γ γ λ∈ −

+
= =

−
 (15) 

under Ricardian rent extraction by young stock producers. From optimality condition 
0.75( ) ( ) [ ( )]I M b Ib w c b c bσγ γ θ κ θ γ−− = + , it is clear that * /db dw =  

0.25 * * 0.75 *(0.75 ) ( ) /[( ) ( )] 0.75
sign

b bbw c b b w c bσ σσ ρ σ− − −− − = − . That is, the optimal plane of 

nutrition increases (decreases) with animal weight (and time) if 0.75 ( )σ> < . For 
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0.75 σ> , the intuition is that intake contracts relative to maintenance costs as weight in-

creases. Ration density should increase at higher weights in order to accelerate the animal 

through the later stages of feeding. Anecdotal evidence suggests to the author that some 

beef growers at any rate tend to increase feed density close to slaughter, but this will de-

pend on the animal type, season of slaughter whenever animal prices are seasonal, and 

prevailing feed market prices. 

In addition, * /db dw  will tend to be small when the relative curvature of the cost 

function, * *( ) / ( )bb bc b c b , is large. We also have fce (growth/day over intake/day) as  

 * 1 0.751 ( ) [ ( )] [ ( )] .
( )

dw t b w t w t
I w dt

σλ λρ− −= −  (16) 

If * *( ) / ( )bb bc b c b  is sufficiently large that *( )b w  is quite weight-insensitive and if 

0.75 σ> , then the right-hand side of (16) will decline with weight so that fce declines 

with weight. There is fairly firm evidence that fce declines with animal weight, even at 

weights well below the mature weight (National Research Council 2000, p. 24).12 

The feeding path described in (15) is simpler and differs from those derived by 

Paarsch (1985), by Arnason (1992), and by Heaps (1993), among others using optimal 

control methods because they do not view the price of feeder stock as a derivative. Feed-

ing then is not just about cost minimization but also about throughput in order to capture 

economic profits on feeding. When positive economic profits exist per lot then there will 

be an incentive to accelerate feeding and incur a higher cost of gain in order to re-stock 

early. We argue that, while this will be true when positive economic rents exist, eco-

nomic rents will be dissipated through competition so that the problem reduces to one of 

cost-minimized feeding. 

The insights in (3) and (15) actually allow a feeding path analysis for much less 

structured growth technology specifications. Suppose that there is a vector b  of feeding 

choices, energy density, protein density, and so on. Conditional on weight, the time rate 

of change in costs is written in dot form as ( ; )C b w . Here, Bb∈  where NB +⊂ , that is, 

is non-negative, with B  closed and bounded so that any maximum sought for a continu-

ous function does exist. The growth equation is written in dot form as ( ; )w b w , and 
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feeder value as a function of weight is ( )R w  so that revenue growth with time is 

[ ( ) / ] ( ; )dR w dw w b w  and profit per unit of time is [ ( ) / ] ( ; ) ( ; )dR w dw w b w C b w− . If   

competition bids prices to the point of zero economic profits, then 

( ) / ( ; ) / ( ; )dR w dw C b w w b w=  and the successful bidders will solve  

 * ( ; )( ) arg min Ln ( ; ) ,  ( ; ) ;
( ; )b B

C b wb w H b w H b w
w b w∈

 = =   (17) 

where the strictly increasing log transformation does not change the values of maximiz-

ing arguments.  

It is reasonable to hold that the components of b  are technical complements because 

energy, proteins, and other nutrients are required in approximate proportion for muscle 

formation. As far as the unit cost of liveweight gain goes, this may be represented by the 

assumption that 2 ( ; ) / 0i jd H b w db db ≤ ∀ ,i jb b b∈ . From a standard result on submodular 

cost functions (Topkis 1995), if 2Ln[ ( ; )] / 0i id H b w db dw b b≤ ∀ ∈  then *( )b w  is compo-

nent-wise increasing in weight while if 2 ( ; ) / 0i id H b w db dw b b≥ ∀ ∈  then *( )b w  is 

component-wise decreasing in weight. Now if ( ; ) ( ) ( )C b w f b g w=  and 

( ; ) ( ) ( )w b w h b k w=  then Ln[ ( ; )] Ln[ ( ) / ( )]H b w f b h b= +  Ln[ ( ) / ( )]g w k w  with null 

cross-derivatives so that this form of separability ensures invariance of rations composi-

tion to weight in the optimal feeding schedule. Invariance failed in (15) because 

separation of energy density from weight was not possible. It was possible to establish 

monotonicity on *( )b w  because 2Ln[ ( ; )] /d H b w dbdw  has a uniform sign, that of 

0.75σ − . 

 

Generalized Price-Weight Schedule 
To demonstrate that the insights arrived at are not driven by the specifics of the 

growth technology assumptions, let us solve the pws under some intake function 

( ) ( )II w l wγ= . From the analog to (15) we have13 
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 *( ) ( ) [ ( ); , , , ] .m ms w s w

m m I Ms w s w

dR s ds P w P w w H b s s ds
ds

γ γ θ
= =

= =
= − =∫ ∫  (18) 

Using derived feeder animal pricing it follows that ( )P w =  

*( [ ( ); , , , ] ) /ms w

m m I Ms w
P w H b s s ds wγ γ θ

=

=
− ∫  and, in general equilibrium, ( )P w =  

*

(0)
[ ( ) (0) [ ( ); , , , ] ] /

s w

ys ys I Ms w
P q w H b s s ds wγ γ θ

=

=
+ ∫  so that  

 

*

(0)*
[ ( ); , , , ] ( ) (0)

[ ( ); , , , ]
( ) .

s w

I Ms w ys ys
I M

H b s s ds P q w
H b w w

w w
dP w

dw w

γ γ θ
γ γ θ

=

=

 
 − −  
 =

∫

 (19)  

To simplify, if (0) 0w =  then a sufficient condition for the sign to be negative is that av-

erage feed costs per unit weight gain to weight w , or 1 *

(0)
[ ( ); , , , ]

s w

I Ms w
w H b s s dsγ γ θ

=−

=∫ , be 

decreasing. A sufficient, but not necessary, condition for this to occur is that 
*[ ( ); , , , ]I MH b s s γ γ θ  be decreasing. Conditions are readily identified such that the price 

derivative is positive, at least locally. For (0) 0w = , it suffices that 

1 *

(0)
[ ( ); , , , ]

s w

I Ms w
w H b s s dsγ γ θ

=−

=∫  be increasing locally. 

Convexity of the pws requires that 

 
2 *

2

( ) 1 [ ( ); , , , ] 2 ( )I Md P w dH b w w dP w
dw w dw w dw

γ γ θ
= −  (20) 

so that if ( ) / 0dP w dw ≤  and *[ ( ); , , , ] / 0I MdH b w w dwγ γ θ ≥  then the pws is convex. But, 

since we cannot preclude both ( ) / 0dP w dw >  and *[ ( ); , , , ] / 0I MdH b w w dwγ γ θ <  over a 

weight interval, we cannot rule out local concavity in the pws. The shape of the pws, 

while likely decreasing and convex as in Proposition 4, could be otherwise under growth 

technology assumptions that we are not in a position to rule out based on our review of 

the animal science literature. 
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Discussion 
The intent of this article has been to gain a better understanding of the animal feeding 

operation, with emphasis on rations maintenance costs and equilibrium pricing for feeder 

animals. Our model is inevitably a simplification. Among arguably significant omissions is 

the assumption that the interest rate is zero. There will of course be a downward shift in 

feeder animal prices when the opportunity cost of capital is included, and this shift will be 

more marked at earlier weights. A positive rate will also cause minor distortions in feeding 

incentives because early feeding becomes comparatively more costly. 

A similar minor concern is that feed costs are held to depend only on the ration den-

sity. In the case of grain feed, this is not true because there must be inter-year price 

appreciation in order to motivate storage. For forage, ration costs vary seasonally given 

preservation costs and the high levels of spoilage over time. When ration costs are seasonal, 

then ration levels and feeder animal prices will be seasonal. Accommodating feed seasonal-

ity in the model would be challenging because of storage issues and because processing 

constraints in the face of supply seasonality will also affect feeder animal prices. 

We believe that the insights our model provides will be robust to these and other 

modeling concerns, particularly when markets tend to be stable and non-seasonal in na-

ture. An issue that might be more challenging for the data analyst concerns policy 

distortions in feeder animal markets. It has been policy across European Union countries 

for a long period prior to decoupling reform in the early years of the twenty-first century 

to make annual per head payments on feeder cattle over some of the animal’s life. This 

presents a problem for testing the hypotheses provided in Propositions 4 through 6. But it 

also presents an opportunity to test for rationality regarding price formation consistent 

with the Ricardian rent assumption. 



 

 

Endnotes 

1. An empirical literature, reviewed in Marsh 2001, has estimated determinants of 
feeder prices. 

2. These models, together with Amer et al. 1994 and much of the large production sci-
ence literature on empirical animal growth models, are similar to ours in two 
features of relevance to our work. Both animal maintenance costs and animal dry 
matter intake are held to increase in proportion to ( )weight α  where α  is some 
number close to 0.75. 

3. To be clear, many slightly different technical versions of r  exist, but here it is in-
tended to represent energy expenditure on vital biological functions other than 
feeding and motion. For the mature animal, r  will not include an allocation for 
non-forced growth. For young animals, it may do so. If it does, then r  should de-
cline with age. 

4. Animals must be engineered to withstand limb fracture under stress, and the rest 
follows from manipulating known mechanical laws. 

5. We use energy as a representative growth-limiting requirement in order to econo-
mize on model notation. Inclusion of other constraints, protein balance for example, 
would not change the main messages our paper provides. 

6.  We have ignored interest rates. Like Jarvis (1974, p. 492), we are of the opinion 
that interest rates are of minor importance in determining feeder animal prices. See 
Table 1 in Marsh (2001)for empirical support on this. 

7.  See page 88 in National Research Council 2000. 

8. An optimal control proof of weight invariance is provided in Appendix B. The set-
up there is more general than the one presently under consideration, so the reader 
might want to defer inspection. The proof clarifies how [0, ]minb b R∈ ∆  simplifies the 
optimal feeding path problem. 

9. Proofs of Propositions 2, 3, and 5 are provided in Appendix A. 

10. This 6 percent figure has been adopted by the National Research Council Subcom-
mittee on Beef Cattle Nutrition. 



Feeding and the Equilibrium Feeder Animal Price-Weight Schedule / 21 

11. An age discount could be readily introduced. The analysis would become messy 
without providing additional insights. 

12. As previously mentioned, the standard assumption is that 0.75σ = , but the data to 
support this are less firm than the data to support the 0.75 exponent on maintenance 
costs. 

13. Divide through by ( )l w  rather than by wσ  to obtain [ ; , , , ]I MH b w γ γ θ =  
1 0.75[ ( )] /[ / ( )]I I Mc b E b w l wκ θ γ λ γ γ−+ − . 

 



 

 

Appendix A 

Proofs of Propositions 
 

Proof of Proposition 2. Write the first-order condition arising from (3) as 

 * * *( ) ( ) [ ( )] 0.I M b Ib c b c bγ γ θ κ θ γ− − + =  (A1) 

Second-order conditions will be satisfied locally, and that is all that is necessary, if the 

cost function is strictly convex in b . Concerning part (d), differentiate (A1) and then use 

(A1) to obtain * * 2 */ /[( ) ( )] 0I I M bbdb d b c bθ γ κ γ γ θ= − − < . Part (e) follows from 

* /db dκ =  * */[( ) ( )] 0I I M bbb c bγ γ γ θ− > . For parts (a), and (b), observe that * / Mdb dγ =  

* * *( ) /[( ) ( )] 0b I M bbc b b c bγ γ− > , and * * * */ ( ) /[( ) ( )] 0I M b I M I bbdb d c b b c bγ γ γ γ γ= − − < . For 

part (c), write (A1) as * * *( 1) ( ) [ ( )]bb c b c bρ θ κ θ ρ− = +  and differentiate: * /db dρ =  

* * *( ) /[( 1) ( )] 0b bbc b b c bρ ρ− − < . ■ 

 

Proof of Proposition 3. In each case we will provide a proof by construction. 

Part (a): From the first-order condition (A1) and proof of Proposition 2, write  

 
*

* 2 * * * *( ) ( ) ( ) ( ) ( ).
sign

I M
bb bb b

I

d b b c b b c b c b
d

γ γ ρ
γ
−

= − −  (A2) 

This expression will certainly be positive if * 2 * * *( ) ( ) ( )bb bbb c b b c bρ − −  *(1 ) ( ) 0,bc bε+ =  

0ε > . We will construct an increasing and convex cost function that satisfies this relation 

for all values of b , and so for the optimal value. Set ( )by c b=  and x b=  so that the con-

dition reduces to  
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 2

1 1 (1 ) (1 ) , 0.
1

dy
y dx x x x x

ε ε ρ ε ε
ρ ρ
+ + +

= = − >
− −

 (A3) 

Integrate and substitute to obtain  

 
1

0
1( ) .b

bc b A
b

ερ +− =  
 

 (A4) 

Because 1bρ >  is required for growth, (A4) is positive if 0 0A > , while (A4) is increas-

ing in b  if both 0 0A >  and 1ε > − . We have already imposed the last condition through 

0ε > . 

In order to establish a case in which * 2 * * * *( ) ( ) ( ) ( ) 0bb bb bb c b b c b c bρ − − < , we need 

only identify an acceptable cost function such that * 2 * *( ) ( ) ( ) 0bb bb c b c bρ − = . Re-write 

this as the condition 2( / ) 0x dy dx yρ − = , or 2(1/ )( / ) 1/( )y dy dx xρ=  with solution  

 1/[ ]
0( ) .b

bc b A e ρ−=  (A5) 

Integrate over [ , ], 0b bξ ξ∈ >  to obtain 1/[ ]
1 0( )

b sc b A A e dsρ

ξ

−= + ∫  on [ , ], 0b bξ ξ∈ > . 

Assume 1 0A > , 0 0A > , and then splice any acceptable cost function with requisite 

smoothness on over [0, )b ξ∈  to obtain a function that is increasing and convex while 

satisfying 2 ( ) ( ) ( ) 0bb bb bb c b bc b c bρ − − <  on [ , ], 0b bξ ξ∈ > . 

Part (b): We have  

 
*

* * * *( ) ( ) ( ) ( ).
sign

I M
b bb bb

M

d b c b b c b c b
d

γ γ ρ ρ
γ
−

= − +  (A6) 

The sign is positive if ( ) / ( ) ( ) /( 1)bb bc b c b bρ ε ρ= − −  and 0ρ ε> > , i.e., if ( )bc b =  

( ) /
0 ( 1)A b ρ ε ρρ −− . For 0ρ ε> > , this cost function is positive and increasing on any en-

ergy density level that clears maintenance requirements. The sign in (A6) is negative if 

( ) ( ) ( ) ( )b bb bb bc b bc b c b c bρ ρ ρ− + = − , so that the differential equation to be solved is 

(1/ )( / ) 2 /( 1)y dy dx xρ ρ= − . The equation solves as  
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 2
0( ) ( 1) ,bc b A bρ= −  (A7) 

a positive and increasing function whenever energy density is sufficient to grow the animal. 

Part (c): We have * *( ) / / 0
sign

I Md b d db dγ γ θ θ− = <  from Proposition 2. ■ 

 

Proof of Proposition 5. Part (a): From (8), ( ) / /m mdP w dP w w=  and 

2 2( ) / /m md P w dP dw w w= − . Parts (b)-(d): From (8),  

 

* 2 *

2

* 2 *

2

* 2 *

2

( ) ( ) ( ; , , ) ( ) ( ; , , )0; 0;

( ) ( ) ( ; , , ) ( ) ( ; , , )0; 0;

( ) ( ) ( ; , , ) ( ) ( ;0;

m I M m I M

M M M M

m I M m I M

I I I I

m I M m

dP w w w H b d P w w H b
d w d dw w

dP w w w H b d P w w H b
d w d dw w

dP w w w H b d P w w H b
d w d dw w

γ γ θ γ γ θ
γ γ γ γ

γ γ θ γ γ θ
γ γ γ γ

γ γ θ γ
θ θ θ

− ∂ ∂
= ≤ = ≥

∂ ∂

− ∂ ∂
= ≥ = ≤

∂ ∂

− ∂ ∂
= ≤ =

∂
, , ) 0;I Mγ θ

θ
≥

∂

(A8)  

where the envelope theorem has been employed. ■ 



 

 

Appendix B 

Ration Optimization Problem 
 

Pose the problem as a control path optimization, 

0
{ ( ), } { ( ), }

0.75

( (0)) (0) [ ( ( ))] [ ( )]
Max [ ( ), ] Max ;

( )subject to ( )[ ( )] [ ( )] ;

( ) 0 [0, ); ( ) 0 [0, ); 0; ( ) .

T

m m It
b t T b t T

I M

m

P w P w w c b t E w t dt
J b t T

T
dw t b t w t w t

dt
b t t t w t t t T w T w

σ

σ

κ θ γ

λγ λγ

=
− − +

=

= −

≥ ∀ ∈ ≥ ∀ ∈ ≥ =

∫

(B1) 

In our case it is sufficient to develop the solution to the constrained optimization over 

( )b t  with T  fixed at the optimum (transversality conditions will establish optimum T ). 

Fixing T , the Hamiltonian may be written as  

( )0.75( ( ), ( ), ( )) [ ( ( ))] [ ( )] ( ) ( )[ ( )] [ ( )] ,I I Mw t b t t c b t E w t t b t w t w tσ σφ κ θ γ φ λγ λγ≡ − + + −H (B2) 

Necessary conditions for interior solutions involve  

( )

0.75

0.75
1

( )(B3.1) ( )[ ( )] [ ( )] ,

( ( ))(B3.2) ( ) ,

1 ( )(B3.3) [ ( ( ))] ( ) ( ) 0.75 [ ( )] .
[ ( )]

I M

I I M

dw t b t w t w t
dt

E dc b tt
db

d t c b t E t b t w t
w t dt

σ

σ
σ

λγ λγ

θφ
λ

φ κ θ γ σ φ λ γ σ γ −
−

= −

=

= + − −

(B3)  

The system simplifies upon making the well-known observation that ( )tφ  is the value of 

incremental stock (Léonard and Long 1992, p. 154; Conrad and Clark 1987, p. 36), where 

stock is in this case animal weight. In our case, it is R∆  at the infinitesimal. But the cost 

of the increment is cost per incremental time over weight gain per incremental time, i.e.,  
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 ( ) ( )
* *

* 0.75 * 0.75

[ ( ( ))] [ ( )] [ ( ( ))] [ ( )]( ) .
( )[ ( )] [ ( )] ( ) [ ( )]

I I

I M I M

c b t w t E c b t w t Et
b t w t w t b t w t

σ σ

σ σ

κ θ γ κ θ γφ
λγ λγ λγ λγ −

+ +
= =

− −
 (B4) 

Under Ricardian rent extraction, incremental value must equal incremental cost because 

otherwise there would be positive or negative economic rent over feeding operation, a 

contradiction. Therefore, (B3.2) resolves to  

 ( )0.75

[ ( ( ))] ( ( )) ,
( ) [ ( )]

I

I M

c b t E E dc b t
dbb t w t σ

κ θ γ θ
λγ γ λ−

+
=

−
 (B5) 

i.e., the minimizer of 0.75[ ; , , , ] [ ( )] /[( ) ]I M I I MH b w c b E b w σγ γ θ κ θ γ γ γ λ−= + − . In this 

light, (B3.3) becomes (qualitatively) 

 ( ) 0.75 ,
signd t

dt
φ σ= −  (B6) 

i.e., the unit cost of gain increases (decreases) with time, and so with an increase in 

weight, if 0.75 ( )σ> < . The case of Proposition 1 is when 0.75σ =  so that the unit cost 

of gain is weight invariant. Another way of viewing (B4) under derived feeder animal 

pricing is that 
(0)

( ( )) ( (0)) (0)mw

m mw
w t dw P w P w wφ = −∫  while  

 ( ) ( )
1* *

* 0.75 * 0.75(0) 0

*

0

[ ( ( ))] [ ( )] [ ( ( ))] [ ( )]
( ) [ ( )] ( ) [ ( )]

[ ( ( ))] [ ( )] ,

mw T
I I

w
I M I M

T

I

c b t w t E c b t w t E dwdw dt
dtb t w t b t w t

c b t w t Edt

σ σ

σ σ

σ

κ θ γ κ θ γ
λγ λγ λγ λγ

κ θ γ

−

− −

+ +  =  − −  

= +

∫ ∫

∫
 (B7) 

where /dw dt  is the growth rate under optimal rations. But the right-most term in (B7) 

equals ( (0)) (0)m mP w P w w−  under Ricardian rent extraction on the part of young stock 

suppliers.
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